
letter 
Interfacial tension of phase-separated 
polymer solutions: comparison 
between theory and experiments 

Heinrich and Wolf recently measured for various polymer/(poor) 
solvent systems the interfacial tension between the polymer-rich 
and polymer-poor phases, together with the polymer compo- 
sition in both coexisting phases L2. They found that the 
interfacial tension, tr, was related to the molecular weight of 
chains M and to the difference Aq~ between polymer volume 
fractions in both phases by the equation: 

tr = CM°'S Aq93"8s (1) 

where C depends only on the chemical nature of the polymer 
and solvent. Equation (1) has been verified for monodisperse 
polystyrenes in different solvents (cyclohexane, methylcyclo- 
hexane) as well as for polyisobutenes x. It has also been verified 
for polydisperse polystyrenes, with M the weight-average 
molecular weight of chains 2. 

As mentioned by Heinrich and Wolf, the exponent 3.85 is 
close to the Ising prediction for the dependence of interfacial 
tension on A~o. This is in accord with theory, which predicts 
that the critical properties of polymer solutions undergoing 
liquid-liquid phase separation are in the same universality class 
as the three-dimensional Ising model3. The purpose of this letter 
is to demonstrate that theory also accounts for the M °'5 
dependence of the amplitude, and to propose a more general 
'master-curve' than equation (1), which includes no system- 
dependent constant such as C. 

Near the critical demixing temperature T¢ the interfacial 
tension (an energy per surface unit) is related to the system 
relevant energy and length scales, respectively, kT~ and the 
correlation length of composition fluctuations 3, as follows4: 

= A~kT¢/~ 2 (2) 

where A~ is a numerical constant and k is Boltzmann's constant. 
For systems belonging to the three-dimensional Ising universality 
class ¢ diverges when T¢ is approached (~ = 1 - T/T¢~O) as: 

¢ =A~z -v (3) 

where the exponent v ~ 0.63. When T¢ is approached from the 
two-phase region A~o vanishes as: 

A~p = A~z/~ (4) 

where fl~0.32 s is another Ising exponent. Scaling behaviours 
(3) and (4) have been observed in polymer solutions by several 
investigators 5 (for a review see ref. 6). In addition, the 
system-dependent amplitudes A¢ and A~o behave as powers of 
the number of monomers per chain N ( ~  M) 6. 

Near the critical demixing point, polymer solutions are 
expected to obey the so-called two-scale-factor universality ~, 
which states that there are two independent dimensionless ratios 
between the different physical quantities, just as there are two 
independent critical exponents. One of these universal ratios is 
A~ in equation (2). Chaar et al. s, reviewing the literature, 
concluded that the available experimental data for fluid 
systems (including polymer solutions) are consistent with 
two-scale-factor universality; in particular the median value of 
the ratio a~2/kTc n e a r  T¢ (with ~ measured in the one-phase 
region and tr at a symmetric distance in the two-phase region) 
equals approximately 0.39: 

a = 0.39kT¢/¢ 2 (5) 

which is close to the result obtained from recent Monte42arlo 
simulations 9, i.e. 0.36. 

For  polymer solutions, equations (3) and (4) may be written 
in a more universal manner provided z, Aq~ and the correlation 
length ~ are scaled appropriately. The proper temperature 
variable is x = ( T ~ -  T)/(O- T~) rather than z = (T~-  T)/T¢ (0 is 
the theta temperature where monomer-monomer interactions 
vanish) 1°-~3. ~ is scaled naturally by the unperturbed polymer 
radius of gyration Rg (i.e. at temperature 0), and polymer 
fractions by the critical fraction ¢p¢: 

Atp = BxtJ (6) 
¢P¢ 

and 

- -  = E x -  ~ ( 7 )  

Rs 

Equations (6) and (7) are verified within the mean-field (Flory- 
Huggins and random-phase) approach, where x ,,~ N1/2(1 -- T/T~), 
~0¢ ~N-1/2,  fl= v= 1/2, and B and -= are numerical constants 
easy to calculate ~2. The key point of the present analysis is to 
assume that equations (6) and (7) still hold beyond the 
mean-field approximation ~2. Des Cloizeaux and Jannink, 
analysing some recent Aq~ and ~ measurements ~3'x4 of poly- 
styrenes having various molecular weights in methylcyclo- 
hexane, found the data consistent with equations (6) and (7) 
where fl=0.325, v=0.63, B~3.7 and E~0.44". Here, these 
values are also assumed to be universal, i.e. valid for any 
polymer/solvent system. 

Then, from equations (2), (6) and (7) 

and 

/ 'Z  -- T "~2v 
- - 2  e a=2.0kTcRg l - - ]  

\ 0 - ~ /  
(8) 

a=O.O13kTcR~ 2(AtP~ 2v/# (9) 
\~oc /  

Equations (8) and (9) contain no system-dependent constant 
and can be used to predict the interracial tension of phase- 
separated polymer solutions as a function of the distance (in 
temperature or composition) to the critical point, provided 0, 
Rs(O ) and T~, tpc are known. Equations (8) and (9) have been 
tested for polystyrene/methylcyclohexane and cyclohexane 
systems using critical data measured x and literature values 15 
for Rg at T=O: the calculated values for tr fell within 15% of 
the measured values in ref. 1. 

The scaling behaviour of the critical amplitudes for the 
interfacial tension dependence on AT or A~o is deduced from 
equations (8) and (9) and the molecular weight dependences of 
Rg, ( 0 -  To) and q%. At T ~ 0 polymer chains behave as random 
walks, hence Rg ~ M 1/2. Experiments with a variety of polymer/ 
solvent systems have shown xaArA7 that ( 0 -  Tc)~M-1/2 (as 
predicted by Flory)x a and tp~ ~ M - °  with a ~ 0.38 (the difference 
with Flory's a = 1/2 can be accounted for with a proper analysis 
of fluctuations in chain configurations) ~9. Then: 

~7,~MV-l(Tc-T)2V=M-° '37(Tc-T) l '26  (10) 

an equation first derived and discussed by Widom 2°, and: 

t7 ~ M 2va/# - 1Atp2v/# = M°'4SAtp 3"as (11) 

which is very close to Heinrich and Wolf's experimental finding, 
equation (1). 

*In ref. 12, the constant E is 0.443 not 4.43: des Cloizeaux and 
Jannink have assumed that the ~ given in ref. 14 is in nm, when 
it is in A 
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